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SUMMARY

Direct or large eddy simulation of a turbulent flow field is strongly influenced by its initial or inflow
boundary condition. This paper presents a new stochastic approach to generate an artificial turbulent
velocity field for initial or inflow boundary condition based on digital filtering. Each velocity component
of the artificial turbulent velocity field is generated by linear combination of individual uncorrelated
random fields. These uncorrelated random fields are obtained by filtering random white-noise fields.
Using common elements in these linear combinations results in multi-correlation among different velocity
components. The generated velocity field reproduces locally desired Reynolds stress components and
integral length scales including cross-integral length scales. The method appears to be simple, flexible and
more accurate in comparison with previously developed methods. The accuracy and performance of the
method are demonstrated by numerical simulation of a homogeneous turbulent shear flow with high and
low shear rates. To assess the accuracy and performance of the method, simulation results are compared
with a reference simulation. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increasing performance of current computer technology makes the numerical simulation of
turbulent flows using direct numerical simulation (DNS) and large eddy simulation (LES) tech-
niques attractive. These approaches are able to describe the flow features that cannot be handled
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with Reynolds-averaged Navier–Stokes (RANS) simulations such as significant unsteadiness and
dynamics of the coherent structures (CS) as well as information about higher moment statistics.

Since in these approaches more flow-field structures are captured, their upstream or initial
information must also be specified at inflow boundaries of the computational domain or as initial
condition. In other words, in contrast to RANS methods where only mean profiles or one-point
flow-field statistics, such as k, � or Reynolds stresses, must be prescribed, in DNS and LES all
the resolved scales must be quantified. Therefore, one of the critical issues in DNS and LES is a
realistic prescription of these conditions, able to mimic the main features of an actual turbulent
flow. This issue is generally denoted as supergrid modeling [1].

Two particular problems make supergrid modeling a difficult task. One problem is the prolon-
gation of the required computational domain or time to develop a realistic turbulent field from
inappropriate perturbations. The other serious problem is the large influence of this modeling on
the long term or asymptotic state of the flow-field development [2]. Owing to the chaotic character
of the Navier–Stokes (NS) equations, any uncertainty in inflow or initial condition can remain
as a source of error during the simulation and strongly affect the afterward flow-field develop-
ment [3–9]. Although it is not completely clear, it is mainly believed that this profound effect of
upstream or initial conditions on the turbulent flow-field development is largely influenced by the
characters of CS [9–11]. Therefore, correct specifications of these flow-field structures at inflow
or as initial condition is a critical issue in supergrid modeling.

As a solution, an auxiliary simulation prior or parallel to the main simulation can be carried
out to provide exact flow-field information. On the basis of this exact information, either the
complete flow field or only the CS can be reconstructed at the inflow or as initial condition.
Although this technique provides satisfactory results, its application can be extremely expensive
[9, 12–14]. Therefore, using indeterministic or stochastic approaches to reconstruct these data with
a plausible level of approximation and computational cost, have been extensively investigated as
an alternative.

In stochastic approaches, turbulent inflow or initial conditions are random realizations that
are statistically equivalent with an actual turbulent flow field. However, in practice, the imposed
statistical information is often limited to the correlation function Ri j (x,r), which contains a great
deal of information [15, 16]. Instead of the huge amount of information contained in the correlation
function, a lower level of statistical description provided by different related quantities is mostly
considered. Depending on the candidate statistical quantities, such as Reynolds stresses, energy
spectra, a variety of stochastic methods have emerged [12, 17–23].

Lee et al. [17] proposed a method, based on the appropriate rescaling of a random white-noise
field in wave number space, to generate a turbulent velocity field with prescribed energy spectrum
[24]. This quantity provides a simpler although less complete description for the correlation
function, i.e. all the directional and phase information is lost and has to be reconstructed randomly.
The generated turbulent velocity field does not show specific correlation between different velocity
components in general. However, in this method, the energy content of the CS can be specified
through an energy spectrum function over the low wave number part of the energy spectrum.
Moreover, the incompressible kinematic constraint for a turbulent velocity field, i.e. divergence-free
velocity field, can be easily applied through a projection method in wave number space. Finally,
since this procedure is based on Fourier transformation of the velocity field, its application is
restricted to simple geometries with homogeneous directions.

Hoshiya [25] and Shinozuka [26] developed a procedure to generate multi-correlated random
fields based on the prescribed correlation function, which was later extended to a variety of
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methods. The main idea is to generate a set of correlated random data by a linear transformation
from a set of uncorrelated random data. The kernel of this linear transformation is obtained
from decomposition of the target correlation function matrix. The generated turbulent field based
on this approach can have correct correlation for all velocity components. Using the space–
time correlation function instead of space correlation, this approach is able to introduce time
correlation to the generated random velocity field [18, 23]. Although these procedures are able to
generate random turbulent fields which are statistically identical with an actual turbulent flow, their
application is limited by the extremely huge amount of required information and computational
load.

Lund et al. [12] proposed a method to generate a turbulent velocity field with prescribed mean
profile and Reynolds stresses. In this method, instead of the correlation function, the Reynolds
stress tensor is decomposed as the kernel for the transformation. Although this one-point statistic
information is easily available for most of the cases, direct control on the CS during flow-field
generation based on this procedure is not possible and the generated velocity field shows a flat
energy spectrum, i.e. white noise, which is the main drawback of this method [9].

Smirnov et al. [22] modified the Fourier modes scaling procedure of Lee et al. [17] by
applying Lund’s transformation on a continuous flow field generated as a superposition of harmonic
functions. Scaling of the arguments of these harmonic functions based on the flow-field charac-
teristic length and time scales allows one to introduce anisotropy of turbulence. Consequently,
the outcome is a time-dependent flow field with prescribed Reynolds stresses and prespecified
turbulent characteristic time and length scales. This improvement, allows a crude description
of CS through characteristic length scale and makes the method applicable to more complex
flow fields.

Klein et al. [27] proposed a new procedure based on the digital filtering of random data
followed by Lund’s [12] transformation. This method is able to generate an artificial turbulent
velocity field with prescribed Reynolds stresses. Moreover, the generated velocity field has a
locally prescribed autocorrelation coefficient function. Introducing this second-order, two-point
statistics in the generated flow field, increases the description level for the CS. With a further
simplification, which is specially preferable from an application point of view, this method is able
to satisfy local integral length scales instead of the autocorrelation function. Hereby, there is a
more complete control on the specification of the CS during the generation procedure based on the
exact available information from experiments or simulations or an intuitive feeling of flow-field
length scales.

This method is further refined and extended by other authors [28, 29]. Kempf et al. [28]
improved this method by replacing the filtering procedure with applying physical diffusion. In
this method, by choosing an appropriate local diffusion coefficient, prescribed integral length
scales are established. The generated random fields based on this method and digital filtering
method [27] are equivalent, but the advantage of this method is its applicability to complex
geometries and arbitrary computational grids. Mare et al. [29] further extended the digital
filtering method [27] by locally computing filter functions based on the correlation tensor
decomposition. This improvement increases the ability of the method to reproduce the complete
Reynolds stress tensor as well as any given, locally defined, spatial and temporal correlation
functions.

The great advantage of these recent methods is the ability to reproduce the most important
features of a turbulent field, i.e. CS, based on easily available statistical information and within
an acceptable computational cost. In these methods, first velocity components are generated by
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Figure 1. Cross-correlation coefficient function for a homogeneous turbulent shear flow with
mean shear rate S=15 and �=0.0035 at well-developed stage. (—), reference flow-field

correlation function; (—♦—), digital filtering method.

filtering (digital or based on the physical diffusion) white-noise fields to establish autocorrelation
functions, i.e. Ruu , Rvv and Rww, or their respective integral length scales. Subsequently, Lund’s
transformation combines these velocity components in such a way that the transformed velocity
components yield correct Reynolds stresses.

Since in this method, Lund’s transformation and filtering are performed in different steps,
in flow fields with high anisotropy the exact autocorrelation function or its integral length
scale, generated during the filtering step can be changed by the transformation. In addition, the
resulting cross-correlations between different velocity components, established through Lund’s
transformation, can be significantly different from their physical value. This second issue can be
clearly observed by considering a turbulent homogeneous shear flow with high shear rate. The
velocity flow field of this flow at specific time is reconstructed based on the above-mentioned
method. Figure 1 reveals that the cross-correlation function and consequently its related inte-
gral length scale established through Lund’s transformation shows a huge difference from its
physical value.

The objective of the present study is to complement the above-mentioned procedures, specifically
the digital filtering method [27], concerning these two issues. A new method is presented, which
generates a turbulent velocity field with exact prescribed Reynolds stresses and integral length
scales including the cross-integral length scales between different velocity components thus leading
to a more accurate description of the CS. The required statistical information for this method are
Reynolds stresses and integral length scales of the flow field.

The importance of the cross-integral length scales can be better realized by considering the fact
that the cross-spectra energy terms �i j (�) decay very fast with increasing wave number �. It means
that the main contribution to the �i j (�), and consequently Reynolds stresses 〈uiu j 〉, comes from
small � or relevant large scales. Therefore, cross-integral length scale, as a measure for significant
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correlation between different velocity components, can have a profound effect on the Reynolds
stresses and consequently on the turbulent production.

This paper is further organized as follows. First, the new methodology to generate a stochastic
turbulent flow field with prescribed Reynolds stresses and integral scales is presented. Then the
method is applied to a homogeneous turbulent shear flow and the influence of the level of statistical
information introduced in the procedure is investigated. Finally, it is shown that the new method
has a better overall performance.

2. IMPROVED APPROACH TO GENERATE ARTIFICIAL TURBULENCE

The conventional way to generate a stochastically turbulent velocity field is to superimpose velocity
fluctuations to a mean flow velocity field. These velocity fluctuations are random fields with certain
statistical properties, which may, for example, be known from experimental data. In this section,
the new methodology for generating these fluctuating fields is explained and a procedure for the
proposed method is given. To improve the readability of the paper, mathematical derivations are
discussed in the Appendices.

2.1. Basic mathematical derivation

In this method a turbulent velocity field is generated with prescribed Reynolds stresses and
integral length scales including the cross-integral length scales. The integral length scale can
be considered as a statistical quantity providing a measure of the extent of the region where
velocity components are significantly correlated and it is closely related to the correlation
function

Ri j (x,r, t)=〈ui (x+r, t)u j (x, t)〉 (1)

between the i and j velocity components, separated by a distance vector r. This two-point, one-
time covariance is the simplest statistic containing some information on the spatial structure of a
random field. From this quantity it is possible to define various integral length scales, e.g.

li j (x)=
∫ ∞

0

Ri j (x,re)
Ri j (x,0)

dr = 1

〈uiu j 〉
∫ ∞

0
〈ui (x)u j (x+re)〉dr (2)

where e is the unit vector in an arbitrary direction, in practice x , y or z direction and r =√
x2+ y2+z2.
From this definition it can be observed that the correlation functions and their respective integral

length scales are functions of the separation direction e. Moreover, the cross-integral length scales
depend on the considered velocity components, separated by re, i.e. 〈ui (x)u j (x+re)〉 and 〈ui (x+
re)u j (x)〉 are generally not identical.

Because of this, different integral length scales can be attributed to a turbulent velocity
field, depending on the arguments used to compute the correlation function. This possibility to
define different integral length scales increases the required statistical information and conse-
quently the complexity of the proposed method which is not desirable from an application point
of view.

As it will be explained, in the proposed method the flow field is generated based on filtering with
a spherically symmetric filter function. Therefore, the established correlation functions and their
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respective integral length scales have spherical symmetries and do not depend on the separation
direction e. With an implicit homogeneity assumption, cross-integral length scales become identical
for different shifted velocity components and the level of complexity is further reduced. These
simplifying assumptions make the definition of integral length scales unique. Therefore, for this
method we can introduce only one quantity for each of the length scales luu , lvv , lww, luv , luw

and lvw.
In the new method, a multi-correlated random velocity field is generated by combining different

uncorrelated random fields fi j with zero mean. Each velocity component u, v and w is formed by
a linear combination of these fields, i.e.

u=a11 f11+a12 f12+a13 f13

v=a21 f12+a22 f22+a23 f23

w=a31 f13+a32 f23+a33 f33

(3)

The presence of field f12 in u and v establishes a cross-correlation between these velocity compo-
nents and the same is true for f13 (u and w) and f23 (v and w). It can be shown (see Appendix A)
that the correlation functions for the obtained velocity field, described by Equation (3), are related
to the autocorrelation functions of the individual random fields fi j as follows:

Ruu = (a11)
2r11+(a12)

2r12+(a13)
2r13

Rvv = (a21)
2r12+(a22)

2r22+(a23)
2r23

Rww = (a31)
2r13+(a32)

2r23+(a33)
2r33

Ruv = (a12)(a21)r12

Ruw = (a13)(a31)r13

Rvw = (a23)(a32)r23

(4)

where Ri j are the correlation functions for the generated velocity components and ri j are the
autocorrelation functions of the initial random fields fi j , e.g. r12=〈 f12(x) f12(x′)〉 where x′ =x+r.

In general, the set of Equations (4) contain nine unknown coefficients ai j and six unknown
correlation functions ri j which must be determined from 12 quantities related to the known
correlation functions Ri j (i.e. six integral length scales li j and six Reynolds stresses 〈uiu j 〉). To
make this possible, some simplifications are required. First, a specific shape is assumed for the six
unknown correlation functions ri j and secondly the number of unknown coefficients ai j is reduced
by assuming some relationship among them.

For the unknown correlation functions ri j a gaussian shape is assumed, equivalent to the auto-
correlation function of homogeneous isotropic turbulence in the final period of decay. With this
assumption, theoretically, the spectral content of the generated velocity field is reasonable and
consistent with the viscous structure of the NS equations [16, 24]. Moreover, a normalized gaus-
sian function can be uniquely specified with one coefficient, i.e. its variance �, thus reducing the
problem to the determination of six unknown coefficients, �i j .

It can be shown that filtering an uncorrelated random field generates a correlation in the filtered
field closely related to the filter function [27]. More specifically, by choosing a gaussian filter, the
correlation function has also a gaussian shape with a variance related to the filter width [27, 28].
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Considering this property, each initial random uncorrelated field, fi j in Equation (3), can be
generated by applying a gaussian filter, with appropriate filter width, to a white-noise field �i j :

fi j (x)=Fi j ◦�i j =
∫ +∞

−∞
�i j (x

′)Fi j (x,x−x′)dx′ (5)

where ◦ denotes convolution and the filter function has a gaussian shape with spherical symmetry

Fi j (x)=exp

(
− r2

�2i j

)
(6)

and �i j is the filter width which can be a function of spatial coordinate x. Moreover, all the �i j
used in Equation (5) are mutually uncorrelated and have zero mean:

〈�i j�mn〉=�im� jn, 〈�i j 〉=0 (7)

A further simplification concerns reducing the nine unknown coefficients ai j by assuming that in
Equation (3) the cross-term coefficients ai j and a ji are established with a common structure fi j .
However, the sign of these cross-term coefficients depend on the sign of the respective Reynolds
stresses. This leads to

ai j =sign(〈uiu j 〉).a ji =±a ji (8)

where sign(〈uiu j 〉) is the sign of the Reynolds stress components, 〈uiu j 〉:

sign(〈uiu j 〉)= 〈uiu j 〉
|〈uiu j 〉| =±1 (9)

With these assumptions the following set of equations for the generated velocity field is
obtained:

u = a11 exp

(
− r2

�211

)
◦�11+a12 exp

(
− r2

�212

)
◦�12+a13 exp

(
− r2

�213

)
◦�13

v = ±a12 exp

(
− r2

�212

)
◦�12+a22 exp

(
− r2

�222

)
◦�22+a23 exp

(
− r2

�223

)
◦�23

w = ±a13 exp

(
− r2

�213

)
◦�13±a23 exp

(
− r2

�223

)
◦�23+a33 exp

(
− r2

�233

)
◦�33

(10)

where + or − for some coefficients in v and w components in Equation (10) are determined based
on the signs of related Reynolds stresses 〈uiu j 〉, i.e. via Equation (9). Correlation functions for
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the generated velocity field expressed by Equation (10) are (see Appendix B for more details):

Ruu =
(
a211

√
�

2
�11

)
exp

(
− r2

2�211

)
+
(
a212

√
�

2
�12

)
exp

(
− r2

2�212

)

+
(
a213

√
�

2
�13

)
exp

(
− r2

2�213

)

Rvv =
(
a212

√
�

2
�12

)
exp

(
− r2

2�212

)
+
(
a222

√
�

2
�22

)
exp

(
− r2

2�222

)

+
(
a223

√
�

2
�23

)
exp

(
− r2

2�223

)

Rww =
(
a213

√
�

2
�13

)
exp

(
− r2

2�213

)
+
(
a223

√
�

2
�23

)
exp

(
− r2

2�223

)

+
(
a233

√
�

2
�33

)
exp

(
− r2

2�233

)

Ruv = sign(〈uv〉)
(
a212

√
�

2
�12

)
exp

(
− r2

2�212

)

Ruw = sign(〈uw〉)
(
a213

√
�

2
�13

)
exp

(
− r2

2�213

)

Rvw = sign(〈vw〉)
(
a223

√
�

2
�23

)
exp

(
− r2

2�223

)

(11)

Reynolds stresses for the generated velocity field can be easily obtained by setting r =0 in the
expression for the correlation functions:

〈uu〉 =
(√

�

2

)
[(a211�11)+(a212�12)+(a213�13)]

〈vv〉 =
(√

�

2

)
[(a212�12)+(a222�22)+(a223�23)]

〈ww〉 =
(√

�

2

)
[(a213�13)+(a223�23)+(a233�33)]

〈uv〉 =
(√

�

2

)
(a212�12).sign(〈uv〉)

〈uw〉 =
(√

�

2

)
(a213�13).sign(〈uw〉)

〈vw〉 =
(√

�

2

)
(a223�23).sign(〈vw〉)

(12)
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Moreover, integral length scales can be analytically obtained based on Equation (2) (see
Appendix C for more details):

luu =
(�

2

) (a11�11)2+(a12�12)2+(a13�13)2

〈uu〉

luu =
(�

2

) (a11�11)2+(a12�12)2+(a13�13)2

〈uu〉

lvv =
(�

2

) (a12�12)2+(a22�22)2+(a23�23)2

〈vv〉

lww =
(�

2

) (a13�13)2+(a23�23)2+(a33�33)2

〈ww〉

luv =
(√

�

2

)
�12

luw =
(√

�

2

)
�13

lvw =
(√

�

2

)
�23

(13)

The set of Equations (12) and (13) express the 12 unknown coefficients of the method based
on the 12 known statistical quantities, i.e. Reynolds-stresses and integral length scales. These sets
of algebraic equations can be analytically solved to obtain the unknowns:

�12=
(√

2

�

)
luv, a12=

√
|〈uv〉|
luv

(14)

�13=
(√

2

�

)
luw, a13=

√
|〈uw〉|
luw

(15)

�23=
(√

2

�

)
lvw, a23=

√
|〈vw〉|
lvw

(16)

�11=
(√

2

�

)
(luu)〈uu〉−(luv)|〈uv〉|−(luw)|〈uw〉|

〈uu〉−|〈uv〉|−|〈uw〉| (17)

�22=
(√

2

�

)
(lvv)〈vv〉−(luv)|〈uv〉|−(lvw)|〈vw〉|

〈vv〉−|〈uv〉|−|〈vw〉| (18)

�33=
(√

2

�

)
(lww)〈ww〉−(luw)|〈uw〉|−(lvw)|〈vw〉|

〈ww〉−|〈vw〉|−|〈uw〉| (19)
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a11= 〈uu〉−|〈uv〉|−|〈uw〉|√
(luu)〈uu〉−(luv)|〈uv〉|−(luw)|〈uw〉| (20)

a22= 〈vv〉−|〈uv〉|−|〈vw〉|√
(lvv)〈vv〉−(luv)|〈uv〉|−(lvw)|〈vw〉| (21)

a33= 〈ww〉−|〈uw〉|−|〈vw〉|√
(lww)〈ww〉−(luw)|〈uw〉|−(lvw)|〈vw〉| (22)

With the filter widths and coefficients expressed in Equations (14)–(22), the velocity field can
be generated based on Equations (10). Finally, this generated turbulent field u, v and w can be
alternatively used as initial or inflow boundary condition. In the second application, a large volume
of data can be generated, stored and subsequently convected through the inflow plane based on
Taylor’s hypothesis. However, the length of the stored data for inflow application should be long
enough to avoid the introduction of flow periodicity through the domain.

3. APPLICATION OF THE NEW APPROACH

In this section, the proposed method is examined by generating turbulent initial conditions for
homogeneous turbulent shear flow. To this end, different simulations, starting from various turbu-
lent initial conditions, are compared with a reference simulation. These various turbulent initial
conditions are generated, using extracted statistical information at a well-developed stage of the
reference flow field in the self-similar period.

An overview of the main properties of different initial conditions used to initialize the simulations
is given in Table I. The simplest initial condition, i.e. IC1, consists of white noise with prescribed
turbulent kinetic energy components 〈uu〉, 〈vv〉 and 〈ww〉. Initial condition IC2 has complete
Reynolds stresses information generated based on Lund’s transformation [12]. Initial condition
IC3 has prescribed turbulent kinetic energy components 〈uu〉, 〈vv〉, 〈ww〉 and normal integral
length scales luu , lvv and lww, generated by applying appropriate gaussian filters on the velocity
field of IC1. Finally, initial condition IC4 is generated based on the new approach and satisfies
both Reynolds stresses and integral length scales, li j , including cross-terms.

3.1. Reference homogeneous shear flow simulation

Homogeneous shear flow, where all the turbulent statistics are spatially uniform, can be considered
as a bridge between the strongly idealized homogeneous isotropic turbulent flow and more realistic

Table I. Properties of different turbulent initial conditions used for different simulations.
The imposed statistical quantities for each initial turbulent field are marked.

Initial 〈ui u j 〉 〈ui u j 〉 li j li j
conditions where i = j where i 	= j where i = j where i 	= j

IC1 C — — —
IC2 C C — —
IC3 C — C —
IC4 C C C C
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S=du/dz

Figure 2. A sketch of the mean velocity profile in homogeneous shear flow and coordinate system.

turbulent shear flows such as mixing layer and plane jet. This test case has been mainly investigated
to examine the effects of anisotropy of large scales, to examine the existence of the organized
structures in turbulence and to develop models for inhomogeneous turbulent flows [30–33].

Apart from simple geometry and boundary conditions, other characteristics of this flow make
it an appropriate test case for this research. First, this test case is a temporally evolving shear
flow showing a self-similar state. That is, when statistics are normalized by appropriate quantities,
they become independent of time [34–36]. Therefore, the impact of different initial conditions on
the asymptotic flow-field behavior—which can be interpreted as the effect of different upstream
boundary conditions on the stationary state for a spatially evolving turbulent flow—can be investi-
gated with an affordable computational cost. Secondly, the effects of the cross-integral length scales
on the flow-field behavior can be better appreciated due to the existence of anisotropic large-scale
structures in this flow field. Finally, flow-field homogeneity and spanwise symmetry reduce the
required statistical information for the above-mentioned initial conditions. It can be shown that
the spanwise velocity component v is uncorrelated with streamwise and normal components u
and w. Therefore, their respective Reynolds stresses 〈uv〉, 〈vw〉 and integral length scales luv , lvw

are zero.
In the considered temporal homogeneous turbulent shear flow, the imposed mean flow in stream-

wise direction x is a linear function of the normal coordinate z:

U (z)= Sz (23)

where S is the mean shear rate (see Figure 2). The homogeneous shear flow results presented
in this paper are taken from low and high shear rate simulations. For all simulations kinematic
viscosity is �=0.001. For low shear rate simulations S=10.0 and for high shear rate simulations
S=20.0, where all the flow-field parameters are in arbitrary units. The fully compressible NS
equations are solved, for the fluctuating part of the velocity field u(x, t), only [37]

U(x, t)=U (z)ex+u(x, t) (24)

where U(x, t) is the complete velocity field and ex is the unit vector in streamwise direction x .
The set of NS equations are solved based on a cell-averaged finite-volume approach. Convective
and viscous fluxes are discretized on a uniform mesh with 1003 grid cells, with grid spacing
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Figure 3. History of Reynolds stress components evolution and correlation coefficients
of reference homogeneous turbulent shear flow simulation. (a) The normalized Reynolds
stresses: (—
—), 〈uu〉/q; (—◦—), 〈vv〉/q; (—�—), 〈ww〉/q; (—+—), −〈uw〉/(u′w′);
(—�—), 〈uv〉/(u′v′); (—∇—), 〈vw〉/(v′w′), where q=〈uiui 〉, u′ =√〈uu〉, v′ =√〈vv〉
and w′ =√〈ww〉; (b)–(e) correlation coefficients �uu , �vv , �ww and �uw at St∗ =5.88.
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Table II. Flow-field statistic for the low shear rate reference simulation at St∗ =5.88; q=〈uiui 〉 with
summation convention, u′ =√〈uu〉 and w′ =√〈ww〉.

〈uu〉ref
q

〈vv〉ref
q

〈ww〉ref
q

〈uw〉ref
u′w′

lrefuu
(�/S)1/2

lrefvv

(�/S)1/2
lrefww

(�/S)1/2
lrefuw

(�/S)1/2

0.4114 0.2933 0.2953 −0.4581 18.6338 16.2465 16.7035 16.0960

�x/(�/S)1/2 equal to 6 and 3, respectively, for low and high shear rate simulations, using a
second-order discretization. For time integration an explicit four-stage compact-storage Runge–
Kutta scheme of second-order accuracy with coefficients [ 14 , 1

3 ,
1
2 ,1] is used. Since no subgrid

scale model has been introduced to the set of equations, simulations can be considered as a coarse
DNS based on this grid spacing. Although using high-order discretizations or spectral methods
is more usual for solving this test case due to its simple geometry, in this research a second-
order scheme is considered as will be explained. Besides very successful DNS computations using
second-order schemes (see [38, 39]), most of the LES computations are performed based on the
low-order discretization methods. Therefore, using this low-order DNS computation can also reveal
the performance of this stochastic method in LES simulations without influencing the results by
subgrid scale model effects.

Figure 3 shows the flow-field correlation functions at a specific non-dimensional time
St∗ = St∗ =5.88 and the evolution of the Reynolds stress components for the low shear rate
reference simulation. This reference simulation is started from an isotropic turbulent velocity
field with top hat energy spectrum over wave numbers 16<k<32 [40]. From Figure 3(a) it can
be clearly observed that the normalized Reynolds stresses almost achieve a constant level after
non-dimensional time St≈4 which indicates that the flow field is in a self-similar state. Also it
can be seen that 〈uv〉 and 〈vw〉 remain zero during the flow-field evolution which reflects the
spanwise symmetry property of the homogeneous turbulent shear flow. This also reveals that
this computational resolution provides enough spatial ensembles to capture the main averaged
properties of the homogeneous turbulent shear flow.

The flow field at St∗ =5.88 is saved and the required statistical quantities are extracted and
presented in Table II. However, with respect to the computed statistical quantities in Table II,
two issues have to be emphasized on. First issue is related to the correlation coefficient �i j with
negative region or negative overshoot in Figure 3(c)–(e). As already mentioned in Section 2.1, in
the proposed method the random flow field is generated using a spherically symmetric gaussian
filter function. Consequently, the established correlation shows an approximately gaussian shape
which is a positive-definite function and cannot represent negative overshoot. This problem is dealt
with by computing integral length scales based on the absolute value of the correlation function [3],

li j (x)=
∫ ∞

0
|�i j (x,re)|dr (25)

Second issue is related to the different values of the integral length scales in different directions.
Because of the spherical symmetry of the filter function, the proposed method is able to generate
velocity field with unique integral length scale for each velocity component in all directions. This
restriction is solved by considering the largest integral length scale for each velocity component
which for this test case is in streamwise direction, i.e. the integral length scales in Equation (25)
are computed based on the separation direction rex.
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Figure 4. Projection of the instantaneous initial vorticity vectors on a plane inclined at
45◦; s-direction is along and n-direction is normal to the plane. (a) Reference vorticity

field at St= St∗; (b) IC1; (c) IC2; (d) IC3; and (e) IC4.
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Figure 5. Flow-field evolution of homogeneous turbulent shear flow, initialized with different
random fields: (a) 〈uu〉/q; (b) 〈vv〉/q; (c) 〈ww〉/q; and (d) −〈uw〉/u′w′, where q=〈uiui 〉,
u′ =√〈uu〉 and w′ =√〈ww〉; (—), reference simulation (low shear rate); (◦), IC4 or new
approach (all the Reynolds stress and integral length scales imposed); (�), IC3 (only normal
Reynolds stresses and integral length scales imposed); (.), IC2 (all the Reynolds stress compo-

nents imposed); (�), IC1 (only normal Reynolds stress components imposed).

The presented quantities in Table II, computed based on the above-mentioned issues, are subse-
quently used to generate different random turbulent initial conditions.

3.2. Comparison of different initial conditions

In this section, to examine the capability of the method, several simulations are carried out
for a homogeneous turbulent shear flow, starting at St= St∗. Turbulent velocity fields for these
simulations are initialized by different turbulent velocity fields, satisfying different level of target
statistics, corresponding to IC1, IC2, IC3 and IC4, elaborated in Table I.

First, to provide a direct way to qualitatively compare different initial conditions, the instan-
taneous flow-field CS are demonstrated using instantaneous vorticity field. Figure 4 shows the
projection of the instantaneous initial vorticity vectors on a plane inclined at 45◦ (the direction
of principal elongation of the mean strain). On the basis of the previous observations [31], it is
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Figure 6. Evolution of the deviation of the Reynolds stress components from low shear
rate reference simulation: (a) 〈uu〉; (b) 〈vv〉; (c) 〈ww〉; and (d) 〈uw〉 where deviations
are computed based on Equation (27). (—◦—), IC4 or new approach, for which all the
Reynolds stress and integral length scale components are imposed; (—�—), IC3, for
which only normal Reynolds stress and integral length scale components are imposed.

known that vortex tubes, are mainly inclined at 45◦ to the flow direction. It can be observed that
initial conditions, IC3 and IC4, are more capable to produce CS.

Figure 5 shows the evolution of the normalized Reynolds stress components for these simulations.
Comparing the evolution of these quantities in Figure 5 reveals that the flow field started from
initial condition with prescribed integral length scales, i.e. IC4 and IC3 are much closer to the low
shear rate reference simulation. Moreover, using initial velocity field IC4, generated based on the
new procedure, results in more accurate flow-field evolution compared with the simulation with
only prescribed normal integral length scale IC3. The difference between these two cases can be
better observed by considering their total deviation from the reference simulation as a measure for
the total integral error,

errtot(	)=
∫ 
=20


=St∗
err	(
)d
 (26)
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Table III. Total deviation for all simulations for low shear rate simulations; q=〈uiui 〉, u′ =√〈uu〉,
w′ =√〈ww〉. 〈uu〉/qIC4=0.1311, 〈vv〉/qIC4=0.0946, 〈ww〉/qIC4=0.0639, 〈uw〉/u′w′

IC4=0.4093.

IC4 IC3 IC2 IC1

Total error for 〈uu〉
q /

〈uu〉
q IC4

1.0000 1.0117 3.9239 3.7668

Total error for 〈vv〉
q /

〈vv〉
q IC4

1.0000 1.1496 1.5848 1.1524

Total error for 〈ww〉
q /

〈ww〉
q IC4

1.0000 1.0383 5.7538 6.0832

Total error for 〈uw〉
u′w′ /

〈uw〉
u′w′ IC4 1.0000 1.6597 2.1895 2.6312
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Figure 7. History of the normalized Reynolds stress components evolution for the homogeneous shear flow
with high shear rate S=20; (—
—), 〈uu〉/q; (—◦—), 〈vv〉/q; (—�—), 〈ww〉/q; (—+—), −〈uw〉/(u′w′);
(—�—), 〈uv〉/(u′v′); (—∇—), 〈vw〉/(v′w′), where q=〈uiui 〉, u′ =√〈uu〉, v′ =√〈vv〉 and w′ =√〈ww〉.

where

err	(
)=
√

(	(
)−	ref(
))2 (27)

and 	 represents the normalized Reynolds stress components.
Figure 6 shows this error for two simulations initialized by IC4 and IC3. Although both simula-

tions are close to each other, it can be observed that data generated from the new procedure show
smaller deviation from the reference simulation, especially in the initial phase of the simulation.
Computing total deviations from the reference simulation during computation time confirms that
the most accurate results are obtained from initial condition where all the Reynolds stresses and
integral length scales are prescribed, i.e. IC4. Listed in Table III are total errors for all simulations
computed based on Equation (26) and normalized with the total error of IC4.
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Figure 8. Flow-field evolution of homogeneous turbulent shear flow with higher shear rate S=20, initialized
with random fields IC3 and IC4. (a) 〈uu〉/q; (b) 〈vv〉/q; (c) 〈ww〉/q; and (d) −〈uw〉/u′w′, where
q=〈uiui 〉, u′ =√〈uu〉 and w′ =√〈ww〉. (—), reference simulation; (◦), IC4 or new approach, for which
all the Reynolds stress and integral length scale components are imposed; (�), IC3, for which only normal

Reynolds stress and integral length scale components are imposed.

For flow fields with high level of anisotropy, it is expected that the effects of the anisotropic
parts of the correlation function and consequently related statistical quantities such as cross-
integral length scales become more important. To examine the influence of higher anisotropy, the
higher shear rate reference simulation is considered with the same resolution, initial condition and
kinematic viscosity explained in Section 3.1 while the shear rate is doubled, i.e. S=20.

Figure 7 shows the evolution of the Reynolds stress components for high-shear rate simula-
tion. The oscillations of the Reynolds stress components and non-zero values of 〈uv〉 and 〈vw〉
(specifically before St∼6) show that the used resolution is too coarse to provide enough ensem-
bles. However, after a transient period the solution shows a plateau region. At non-dimensional
time St=7.3, the required statistical information is extracted from the flow field to generate two
turbulent velocity fields based on IC3 and IC4 which are used for simulations.
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Table IV. Total deviation from high shear flow-field reference for simulations initialized with
IC3 and IC4; q=〈uiui 〉, u′ =√〈uu〉, w′ =√〈ww〉. 〈uu〉/qIC4=0.3581, 〈vv〉/qIC4=0.2371,

〈ww〉/qIC4=0.2729, 〈uw〉/u′w′
IC4=0.49.

IC4 IC3

Total error for 〈uu〉
q /

〈uu〉
q IC4

1.0000 1.3675

Total error for 〈vv〉
q /

〈vv〉
q IC4

1.0000 1.1783

Total error for 〈ww〉
q /

〈ww〉
q IC4

1.0000 1.4357

Total error for 〈uw〉
u′w′ /

〈uw〉
u′w′ IC4 1.0000 1.9330

Figure 8 shows the evolution of the normalized Reynolds stress components for these simulations.
To remove the wiggles, figures are smoothed out with interpolation. Although both solutions closely
follow the reference simulation, the total errors presented in Table IV reveal that the new procedure
results in more accurate simulation. Moreover, by comparing the errors between IC4 and IC3 in
Tables III and IV it can be observed that increasing the shear rate also increases deviation between
simulations started from IC4 and IC3.

To recapitulate, simulations initialized by the new procedure where all the Reynolds stress
components and integral length scales are prescribed show a more accurate flow-field evolution
compared with simulations initialized with initial conditions containing less statistical informa-
tion. Comparing the low and high shear rate cases, it is clear that the impact of considering
cross-integral length scales in the generation procedure becomes more important at higher level
of anisotropy.

4. CONCLUSION

A new stochastic method for generating an artificial turbulent velocity field for DNS and LES
has been developed and tested. This method generates a fluctuating velocity field that satisfies
both prescribed local integral length scales, including cross-integral length scales and Reynolds
stresses. In this method, first by filtering individual random white-noise fields, different uncorrelated
random fields with prespecified gaussian autocorrelation functions are generated. Subsequently,
these random fields are combined with appropriate coefficients to generate the final turbulent
velocity field. The application of the proposed method is inexpensive and does not require periodic
directions.

To examine the application of the proposed method, different numerical simulations of a
temporally developing homogeneous turbulent shear flow have been performed. Turbulent velocity
fields are used to initialize the simulations containing different levels of statistical information.
Comparing the simulation results with a reference simulation revealed that the new procedure
yields velocity field with more complete spectral content and consequently more accurate
results. Moreover, by increasing the shear rate, the impact of the considered cross-integral
length scale information in the initial condition on the flow-field evolution becomes more
important.
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APPENDIX A: CORRELATION OF A RANDOM VELOCITY FIELD

In this Appendix, it is shown that the correlation functions of the velocity field described by
Equation (3) can be expressed by Equation (4). For convenience, only u and Ruu are considered.
Let f11, f12 and f13 be three random uncorrelated fields, i.e.

corr( fi j fmn)=〈 fi j fmn〉=�im� jn (A1)

where corr( f,h) means correlation function for two signals f (x) and h(x):

corr( f,h)=
∫ +∞

−∞
f (x)h(x+r)dx (A2)

Furthermore, the Fourier transform of function f (x), f̂ is denoted by

f̂ (k)=FT( f )=
∫ +∞

−∞
f (x) exp(−2�ikx)dx (A3)

Using the following Fourier transform pairs:

a f +bh ⇐⇒ a f̂ +bĥ (A4)

corr( f,h) ⇐⇒ f̂ .̂h∗ (A5)

where * in Fourier transformation means conjugate. It can be seen for velocity component u=
a11 f11+a12 f12+a13 f13, the autocorrelation Ruu is

Ruu = FT−1{̂u .̂u ∗}
(A4),(A5)= FT−1{(a11 f̂11+a12 f̂12+a13 f̂13).(a11 f̂

∗
11+a12 f̂

∗
12+a13 f̂

∗
13)}

(A1)= FT−1{a211 f̂11 f̂ ∗
11+a212 f̂12 f̂

∗
12+a213 f̂13 f̂

∗
13}

Ruu = {a211r11+a212r12+a213r13}

(A6)

APPENDIX B: CORRELATION FOR GENERATED VELOCITY FIELD BASED
ON THE PROPOSED METHOD

In this Appendix, it is shown that the correlation functions of the velocity field described by
Equation (10) can be expressed by Equation (11). For convenience, only u and Ruu are considered.
Velocity component u is

u=a11 exp

(
− r2

�211

)
◦�11+a12 exp

(
− r2

�212

)
◦�12+a13 exp

(
− r2

�213

)
◦�13
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where �i j are uncorrelated white noises satisfying Equation (7), �i j are filter widths, ai j are
coefficients and ◦ denotes filtering. Using the following Fourier transform pairs:

exp

(
− x2

a2

)
⇐⇒ √

�a exp(−�2k2a2) (B1)

( f ◦h) ⇐⇒ f̂ .̂h (B2)

where ( f ◦h) means filtering or convolution:

( f ◦h)=
∫ +∞

−∞
f (x)h(x−r)dx (B3)

The correlation function for velocity component u can be written as

Ruu =FT−1{̂u .̂u ∗}
where the Fourier transformation of u equals

û
(B1),(B2)= (

√
�a11�11) exp(−�2k2�211).�̂11+(

√
�a12�12) exp(−�2k2�212).�̂12

+(
√

�a13�11) exp(−�2k2�213).�̂13 (B4)

Therefore, Ruu is

Ruu
(A5),(A7)= FT−1{(√�a11�11)

2 exp(−2�2k2�211).(�̂11�̂
∗
11)}

+FT−1{(√�a12�12)
2 exp(−2�2k2�212).(�̂12�̂

∗
12)}

+FT−1{(√�a13�13)
2 exp(−2�2k2�213).(�̂13�̂

∗
13)}

Applying the inverse Fourier transformation results in

Ruu =
(
a211

√
�

2
�11

)
exp

(
− r2

2�211

)
+
(
a212

√
�

2
�12

)
exp

(
− r2

2�212

)

+
(
a213

√
�

2
�13

)
exp

(
− r2

2�213

)
(B5)

APPENDIX C: INTEGRAL LENGTH SCALE FOR GENERATED VELOCITY FIELD

In this Appendix, it is shown that the integral length scales for the velocity field described by
Equation (10) can be expressed by Equation (13). Integral length scales are related to the normalized
correlation function. In this research, for simplicity, the correlation functions are normalized with
their particular Reynolds stresses:

li j (x)=
∫ ∞

0

Ri j (x,re1)
Ri j (x,0)

dr = 1

〈uiu j 〉
∫ ∞

0
Ri j (x,re1)dr (C1)
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where e1 is the unit vector in one of the x , y or z direction. However, in this method the applied
filter function is an isotropic Gaussian function which produces correlation function with spherical
symmetry. Therefore, established integral length scales are also isotropic

li j (x)= 1

〈uiu j 〉
∫ ∞

0
Ri j (x;rex ,0,0)dr = 1

〈uiu j 〉
∫ ∞

0
Ri j (x;0,rey,0)dr

= 1

〈uiu j 〉
∫ ∞

0
Ri j (x;0,0,rez)dr (C2)

Integral length scales can be related to the velocity spectrum tensor 	i j , i.e. the Fourier transform
of the two-point correlation function

�i j (�)=
∫ +∞

−∞
e−i�.rRi j (r)dr=2

∫ +∞

0
e−i�.rRi j (r)dr (C3)

Therefore, integral length scales can be easily extracted from Equation (C3) by setting �=0:

li j = 1

2〈uiu j 〉�i j (0) (C4)

Considering the fact that �i j (�)= ûi û ∗
j , where ûi is the Fourier transform of ui velocity component,

integral length scale li i can be written as follows:

�uu(k)
(B4),(C3)= {(√�a11�11)

2 exp(−2�2k2�211).(�̂11�̂
∗
11)}

+{(√�a12�12)
2 exp(−2�2k2�212).(�̂12�̂

∗
12)}

+{(√�a13�13)
2 exp(−2�2k2�213).(�̂13�̂

∗
13)}

considering orthogonality of random fields �i j expressed by Equation (7)

�uu(k)
(7)= {(√�a11�11)

2 exp(−2�2k2�211)}+{(√�a12�12)
2 exp(−2�2k2�212)}

+{(√�a13�13)
2 exp(−2�2k2�213)} (C5)

Therefore, based on Equation (C4)

luu =
(�

2

) (a11�11)2+(a12�12)2+(a13�13)2

〈uu〉 (C6)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:93–117
DOI: 10.1002/fld



GENERATION OF TURBULENT INFLOW AND INITIAL CONDITIONS 115

NOMENCLATURE

e unit vector [L]
x spatial coordinate vector [L]
r spatial separation vector [L]
t time [T]
� kinematic viscosity (�/�) [LT−1]
� wave number [L−1]
�i j (�) velocity–spectrum tensor [L3T−2]
Ri j (x,r) two-point velocity correlation [L2T−2]
�i j (x,r) two-point velocity correlation coefficient

(
Ri j (x,r)
Ri j (x,0)

)
〈〉 ensemble average
li j integral length scale for velocity components i and j [L]
fi j random field with specific autocorrelation and zero mean
�i j , �i j uncorrelated random field with zero mean
ri j autocorrelation function for random field fi j
ai j coefficients
�i j filter width [L]
Fi j gaussian filter with filter width �i j
S shear rate [T−1]
St non-dimensional time (S.t)
U(x, t) complete velocity field [LT−1]
u(x, t) fluctuating part of velocity field [LT−1]
Abbreviations

NS Navier–Stokes
DNS direct numerical simulation
RANS Reynolds-averaged Navier–Stokes
CS coherent structures

Subscripts

x streamwise direction [L]
y spanwise direction [L]
z normal direction [L]
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